
Update your firmware where you can - UEFI (confusingly called BIOS by most
manufacturers, able to download from your motherboard's manufacturer's website),
possibly your drive, soundcard from your headphones,...
Learn to recognize what an executable is and do not run any that you do not trust, then
you have no need for an AV as long as you keep the software up to date (Chocolatey is a
huge help with managing updates)

Example Client config

Example Server config

System Administration

Software
Some tips

Wireguard

[Interface]
PrivateKey = <censored>
Address = 10.200.200.2/32
DNS = 8.8.8.8

[Peer]
PublicKey = aHcw4mjbI0md5VwQSJovvASLs0bkd0Dkwa1Ma4y6yW0=
AllowedIPs = 0.0.0.0/0
Endpoint = sc1.rys.pw:51820

[Interface]
Address = 10.200.200.1/24

GRUB on Arch wiki

Get grub to ignore bad devices and install properly:

blockdev --flushbufs /dev/sde && blockdev --flushbufs /dev/sda && grub-mkdevicemap -n

[[SSH]]

Dependencies: wine wine_gecko wine-mono winetricks

Wine is used to run Windows only executables on other operating systems. More information about
Wine

You can have multiple Windows "installations" which are called prefixes. In fact it is suggested that
you use a new prefix for each application you use.

SaveConfig = true
PostUp = iptables -A FORWARD -i %i -j ACCEPT; iptables -t nat -A POSTROUTING -o ens2 -j MASQUERADE
PostDown = iptables -D FORWARD -i %i -j ACCEPT; iptables -t nat -D POSTROUTING -o ens2 -j MASQUERADE
ListenPort = 51820
PrivateKey = {{ wireguard_private_key }}

[Peer]
PublicKey = 766tBrNv7iinsbd9wMP3yM2ksnIprdT9mgfM9VtFcRM=
AllowedIPs = 10.200.200.0/24

[Peer]
PublicKey = SoFi/vC8IOhBYEMqnFzzuz9umlgDKoo3yytbuIMvizg=
AllowedIPs = 10.200.200.0/24

GRUB

SSH

Wine

https://wiki.archlinux.org/title/GRUB
https://wiki.winehq.org/Wine_User%27s_Guide#What_is_Wine.3F
https://wiki.winehq.org/Wine_User%27s_Guide#What_is_Wine.3F

~/.wine is the default wineprefix (a.k.a. "configuration directory" or "bottle"). You can change which
prefix Wine uses by changing the WINEPREFIX environment variable (outside Wine). To do this, run
the following in a terminal:

export WINEPREFIX=~/.wine-new wine winecfg

Alternatively, you can specify the wine prefix in each command, e.g.

WINEPREFIX=path_to_wineprefix wine winecfg

you can create a new 32 bit wineprefix using the WINEARCH environment variable(note: you can
also export WINEARCH). In a terminal, type:

WINEARCH=win32 WINEPREFIX=~/.wine32bit winecfg

Do not use an existing directory for the new wineprefix: Wine must create it.

Once a 32 bit wineprefix is created, you no longer have to specify WINEARCH in the command line
to use it, as the architecture of an existing wineprefix cannot be changed.

You can use wine64 instead of wine to force 64bit.

There are three Direct3D backends for Wine. Which one you use depends on what features your
card supports.

wined3d - The D3D backend included with Wine upstream. It is a translation layer that converts
Direct3D calls to OpenGL and then sends them to your OpenGL GPU driver. Usable on all GPUs, but
has the worst performance.

wined3d with CSMT - A multi threaded, more optimized version of wined3d. It has the same support
as wined3d but is much faster. It still incurs a high CPU overhead but if your CPU is good it can help
give you better FPS.

Gallium Nine - A native D3D9 implementation that skips the OpenGL translation entirely, requires
less CPU overhead, but requires you use a GPU driver which has the GPU side support built in,
which are all the Gallium mesa drivers (radeonsi, r600g, nouveau). Nouveau is the open source
nVidia driver, but it lacks performance due to reclocking issues and it does not support the GTX10
series because they haven't released signed binaries to support it.

winecfg - > Drives > Autodetect - binds your home folder

Make AppDB reports, it helps the community!

https://appdb.winehq.org/objectManager.php?sClass=application&sTitle=Browse%20Applications&sOrderBy=appName&bAscending=true

Dependencies: qt5-3d, mpv-git(AUR), svp(AUR)

Pre-requisites(optional): proprietary GPU drivers already installed.

Download and install mpv-git from AUR

Set up mpv socket - cat > ~/.config/mpv/mpv.conf << EOF
input-ipc-server=/tmp/mpvsocket # Receives input from SVP
hr-seek-framedrop=no # Fixes audio desync
resume-playback=no # Not compatible with SVP
EOF

Note: There's currently a small bug in SVP causing video stuttering - go to SVP control panel >
Utilities > Application settings; and play with the number of "threads" which are set to 0 by default.
Setting it to 15 fixed the stuttering issues for me.

That's it, running movies through mpv while having SVP manager turned on will play them
smoothly!

Additionally you can install SMplayer, because MPV alone has almost no GUI and relies heavily on
CLI commands.

Dependencies: smplayer

Launch SMplayer > open Preferences > Advanced > Options for MPlayer/mpv and add this to
Options --input-ipc-server=/tmp/mpvsocket

Packages: rsync

Needs to be installed on both computers.

Using rsync over SSH and custom port:

rsync -avz -e "ssh -p PORT" path/to/folder/or/file domain.com:/copy/to/folder

How to install SVP on Arch Linux to
play interpolated movies

rsync

https://aur.archlinux.org/cgit/aur.git/snapshot/mpv-git.tar.gz

-z flag for compression, -r flag for recursive, but that is already implied with -a, which preserves file
permissions and such. (-a equals -rlptgoD (no -H,-A,-X))

Use destructive syncing – “rsync --del” – This will delete any items on the destination that are not
present on the source.

Xen

QEMU

KVM

Hyper-V

virt-manager - start the interface. Make sure to do so after you're already connected to the
internet, else it might use the wrong interface and you'll have no internet connectivity on the VMs.

virt-manager --no-fork - virtmanager will let you type passwords in the terminal instead of
openssh-askpass or something like that

Create a new Virtual Machine using an .ISO image and default settings.

Now you should have a working BIOS VM. To create a UEFI one make sure to check customize
install and select UEFI for firmware when creating a new VM.

Bi-directional copy pasting and drag-n-dropping files to a Windows KVM is possible by simply
installing spice-guest-tools on the KVM(default virt-manager setup uses Spice for display, so it
works out of the box)

To enlarge .qcow2 image, use command qemu-img resize ubuntu-server.qcow2 +5G
Remember it'll end up as unallocated space

Virtualization
Hypervisors

Virtualization under QEMU/KVM

https://www.spice-space.org/download/binaries/spice-guest-tools/spice-guest-tools-latest.exe

https://wiki.archlinux.org/index.php/LXD

Packages: virtualbox linux-headers virtualbox-host-dkms

https://www.youtube.com/watch?v=37D2bRsthfI

http://blog.wikichoon.com/2014/07/enabling-hyper-v-enlightenments-with-kvm.html

You can instantly create a webserver hosting contents of the folder you're currently in via python:

python -m http.server 8080

Tmux is a terminal multiplexer, meaning you can SSH somewhere, run tmux there and disconnect
without killing whatever you were running, or just have multiple terminal tabs without actually
launching more terminals.

Full cheatsheet: http://hyperpolyglot.org/multiplexers

Tip: tmux running a session but list-sessions doesn't show it? This might help killall -s SIGUSR1
tmux

If you're running nested tmux sessions, explanation and tips how to do it efficiently. (CTRL+B twice
to get into the second level session, thrice to get into third level etc)

Using LXC/LXD containers

Virtualization under VirtualBox

GPU Passthrough

More stuff
Webserver in current folder

Tmux

http://stackoverflow.com/a/8530024

Command to detach all other sessions(in case the window is small and other session is blocking
resizing): attach -d

Basic usage:

tmux - start new tmux session

tmux ls - list active sessions

tmux a -t sessionName - attach to specific session

tmux kill-session -t sessionName - kill specific session

Inside of tmux:

CTRL+B d - detach session

CTRL+B % - split current pane vertically

CTRL+B " - split current pane horizontally

CTRL+B ARROW_KEY - move between panes

CTRL+B+ARROW_KEY - resize current pane

CTRL+B z - toggle current pane fullscreen state

CTRL+B x - kill current pane

CTRL+B c - create a new window

CTRL+B n - next window

CTRL+B p - previous window

Packages: apache php php-apache(why?) nghttp2

Sources:Arch wiki

Configuration files are located in the folder /etc/httpd/conf , the main configuration file is httpd.conf

sudo systemctl enable --now httpd - Enable and start the httpd service, you should now be
able to access the Apache server via localhost:80

Apache

https://wiki.archlinux.org/index.php/Apache_HTTP_Server

PHP7 >

Notes:

DocumentRoot in the config sets the folder for the website, default is /srv/http/

Packages: php nginx-mainline php-fpm openssl

systemctl enable --now php-fpm

sudo nano /etc/nginx/nginx.conf - Example config of the server blocks

in **httpd.conf**

comment **#LoadModule mpm_event_module modules/mod_mpm_event.so**

uncomment **LoadModule mpm_prefork_module modules/mod_mpm_prefork.so**

place **LoadModule php7_module modules/libphp7.so** at the end of the LoadModule list

and **Include conf/extra/php7_module.conf** at the end of the Include list

sudo systemctl restart httpd

nginx + PHP

 server {
 listen 0.0.0.0:80; # listen on IPv4
 listen [::]:80 # listen on IPv6
 server_name *.rys.pw rys.pw; #Redirect all port 80 requests to HTTPS(443)
 return 301 https://$host$request_uri;
 }
 server {
 listen 0.0.0.0:443 ssl http2; #listen for TLS IPv4 connections and enable HTTP2
 listen [::]:443 ssl http2; #listen for TLS IPv6 connections and enable HTTP2
 server_name rys.pw;
 root /usr/share/webapps/mediawiki;
 index index.php;
 location ~ \.php$ { # serve .php files via php-fpm
 fastcgi_pass unix:/run/php-fpm/php-fpm.sock;

You can check if your config is valid via nginx -t, and then reload the server config via nginx -s
reload, instead of restarting the daemon.

systemctl enable --now nginx - enable and start nginx

https://cipherli.st/

https://raymii.org/s/tutorials/Strong_SSL_Security_On_nginx.html

https://www.ssllabs.com/ssltest/analyze.html?d=rys.pw

https://securityheaders.io/?q=https%3A%2F%2Frys.pw%2F

https://observatory.mozilla.org/analyze.html?host=rys.pw

TLS 1.0 being deprecated 30th June 20181

 fastcgi_index index.php;
 include fastcgi.conf;
 }
 location / {
 index index.html index.htm index.php;
 }

 }
 server { #forward traffic going to proxy.rys.pw to another server - useful if you need more servers running.
 listen 0.0.0.0:443 ssl http2; #listen for TLS IPv4 connections and enable HTTP2
 listen [::]:443 ssl http2; #listen for TLS IPv6 connections and enable HTTP2
 server_name proxy.rys.pw;
 location / {
 proxy_pass http://10.0.0.10:443/;
 proxy_redirect default;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Forwarded-Ssl on;
 }
 }

TLS(used to be SSL)

https://www.pcisecuritystandards.org/pdfs/15_12_18_SSL_Webinar_Press_Release_FINAL.pdf

All versions of nginx as of 1.4.4 rely on OpenSSL for input parameters to Diffie-Hellman (DH).
Unfortunately, this means that Ephemeral Diffie-Hellman (DHE) will use OpenSSL's defaults, which
include a 1024-bit key for the key-exchange.

cd /etc/ssl/certs && sudo openssl dhparam -out dhparam.pem 4096 - This takes time
depending on your single core performance as it's not multithreated.(few mins on i7-4790K, 42~
mins on Raspberry Pi 3B) You can use 2048 but it's weaker, create the stronger file at a later date if
you just want to get it running for now.

sudo nano /etc/nginx/nginx.conf - place these outside of the server blocks so it applies to all
servers.

Hardening

SSL certs - you'll need to use letsencrypt to get these

ssl_dhparam /etc/ssl/certs/dhparam.pem;
ssl_protocols TLSv1.2 TLSv1.3; # Keep in mind this will break software that is way past it's end of life.
ssl_prefer_server_ciphers on;
ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";
ssl_ecdh_curve secp384r1; # Requires nginx >= 1.1.0
ssl_session_cache shared:SSL:10m;
ssl_session_tickets off; # Requires nginx >= 1.5.9
ssl_stapling on; # Requires nginx >= 1.3.7
ssl_stapling_verify on; # Requires nginx => 1.3.7
#resolver $DNS-IP-1 $DNS-IP-2 valid=300s; # I do not understand those so I disabled them
#resolver_timeout 5s;
#RESOLVERS: if you don't specify any, nginx will resolve HTTP upstream server hostnames when starting up,
and will never attempt to re-resolve them. This is a problem if later the IP addresses of these upstream servers
change. But if you define resolvers in nginx.conf, it will honor the TTL of DNS records, and re-resolve the
hostnames periodically.
#Make sure you correctly respond to this or the issue is fixed before defining the resolver.
http://blog.zorinaq.com/nginx-resolver-vulns/
add_header Strict-Transport-Security "max-age=63072000; includeSubdomains; preload"; # You can add your
domain to Chromium's source code for automatic preloading https://hstspreload.org/?domain=rys.pw
add_header X-Frame-Options DENY;
add_header X-Content-Type-Options nosniff;
add_header X-XSS-Protection "1; mode=block";
#add_header Content-Security-Policy "default-src 'self';"; # if you require no scripting.. likely not the case.
add_header Content-Security-Policy "default-src 'self'; script-src 'self'; img-src 'self' data:; style-src 'self' 'unsafe-
inline'; font-src 'self' data:; child-src 'self'; connect-src 'self' https://apis.google.com; object-src 'none' ";
READ THIS - http://lollyrock.com/articles/content-security-policy/

Add a block that redirects all HTTP requests to HTTPS

Additionally use
listen 443 ssl http2;
listen [::]:443 ssl http2;
in every other server block to force TLS and support HTTP2 protocol.

Packages: mariadb

sudo mysql_install_db --user=mysql --basedir=/usr --datadir=/var/lib/mysql

sudo nano /etc/php/php.ini - uncomment extension=mysqli.so

sudo systemctl restart php-fpm

sudo systemctl enable --now mysqld

**sudo /usr/bin/mysql_secure_installation **

Backup:

Restore:

mysqldump --defaults-file=/path-to-file/SQLcreds.txt --all-databases > my_db.sql

ssl_certificate /etc/letsencrypt/live/rys.pw/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/rys.pw/privkey.pem;

server {
listen 80;
listen [::]:80;
server_name rys.pw;
return 301 https://$host$request_uri;
}

MariaDB

mysqldump --single-transaction --flush-logs --master-data=2 --all-databases -u root -p | gzip >
all_databases.sql.gz

gunzip all_databases.sql.gz | mysql -u root -p

nano SQLcreds.txt

sudo chown root:root SQLcreds.txt

sudo chmod 700 SQLcreds.txt

Packages: phpmyadmin php-mcrypt

sudo nano /etc/nginx/nginx.conf - add a whole new server block for phpmyadmin

Packages: murmur

Port: TCP/UDP 64738

Config: /etc/murmur.ini

Setting valid TLS(SSL) certificate:

[mysqldump]
user=mysqluser
password=secret

PhpMyAdmin

server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;
 server_name phpmyadmin.localhost;
 root /usr/share/webapps/phpMyAdmin;
 index index.php;
 location ~ \.php$ {
 try_files $uri =404;
 fastcgi_pass unix:/run/php-fpm/php-fpm.sock;
 fastcgi_index index.php;
 include fastcgi.conf;
 }
}

Murmur

uncomment and set these two lines in the config

Packages: certbot certbot-apache/certbot-nginx

https://letsencrypt.org/getting-started/

sudo systemctl stop nginx - Stop your webserver. In case of apache you want to stop httpd

sudo certbot certonly --standalone -d rys.pw -d www.rys.pw -d phpmyadmin.rys.pw -d
tickets.rys.pw -d pihole.rys.pw -d mumble.rys.pw -d esp8266.rys.pw -d cloud.rys.pw -d
paste.rys.pw --email email@example.com --rsa-key-size 4096 --agree-tos

sudo systemctl start nginx

To non-interactively renew all of your certificates, run **certbot renew --rsa-key-size 4096 **.

?Final setup - TODO - postfix+dovecot+roundcube+postfixadmin?

Order of importance of records:

SPF > DKIM > DMARC

https://wiki.archlinux.org/index.php/postfix

Packages: postfix #dovecot roundcubemail postfixadmin php-imap

First set up DNS records. I will be using rys.pw, so I set MX record of @ pointed to rys.pw, which is
in turn pointed at my VPS.

systemctl enable --now postfix

This will likely land in your spam folder. echo "Message" | mailx -s "important mail"
yourmail@gmail.com

Edit /etc/postfix/main.cf

sslCert=/etc/letsencrypt/live/rys.pw/fullchain.pem
sslKey=/etc/letsencrypt/live/rys.pw/privkey.pem

Let's Encrypt

Postfix

myhostname = rys.pw

Now you should be able to resend the test email and see it came from your domain.

Edit /etc/postfix/aliases

root: c0rn3j

Now you should be able to read mail coming from the internet(only for users that exist on the
system) and the services on the box.

less /var/mail/c0rn3j

Packages: hostapd dnsmasq

https://w1.fi/cgit/hostap/plain/hostapd/hostapd.conf

postfix reload

change to your user
account, reading email as
root is bad
postalias /etc/postfix/aliases
For later changes run newaliases

Access point (WIP)

https://wiki.gentoo.org/wiki/Hostapd

https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/

sudo nano /etc/hostapd/hostapd.conf

sudo nano /etc/sysctl.conf # is this an outdated way to set ipv4 forward on a systemd distro?

sudo sysctl -p

sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

sudo iptables -A FORWARD -i eth0 -o wlan0 -m state --state RELATED,ESTABLISHED -j ACCEPT

sudo iptables -A FORWARD -i wlan0 -o eth0 -j ACCEPT

sudo sh -c "iptables-save > /etc/iptables.rules"

sudo iptables-restore /etc/iptables.rules # This needs to be executed after boot

sudo nano /ect/dnsmasq

port = 0

sudo ip link set wlan0 up

sudo ip addr add 192.168.2.1/24 broadcast 192.168.2.255 dev wlan0

ssid=myWifi # SSID of the network
wpa_passphrase=MySuperSecurewifi123 # password for the network
interface=wlan0 # Interface it'll run on
auth_algs=1 # 1=wpa, 2=wep, 3=both
channel=6 # Channel it'll broadcast on
driver=nl80211
hw_mode=g # 2.4GHz, 'a' for 5GHz
rsn_pairwise=CCMP
wpa=2 # WPA2 only
wpa_key_mgmt=WPA-PSK
#In addition to these, RPi3 seems to require those
ieee80211n=1 # nothing would work without this
#wmm_enabled=1 # QoS support
#ht_capab=[HT40][SHORT-GI-20][DSSS_CCK-40] #I did not actually need this

net.ipv4.ip_forward = 1

sudo ip route add default via 192.168.0.1

https://wiki.archlinux.org/index.php/samba

Packages: samba

sudo cp /etc/samba/smb.conf.default /etc/samba/smb.conf - copy the default config file to
the default config path

sudo systemctl enable --now smb

sudo nano /etc/samba/smb.conf

Example block

sudo smbpasswd -a c0rn3j - change samba password of the user

testparm -s - will show you the current config

sudo smbstatus - list connections to the shares on the server

sudo systemctl restart smb - restart samba service to apply new config

Now on the client side...

Samba(file sharing)

workgroup = WORKGROUP #change to WORKGROUP so it's the same as default windows WG.

valid users = %S # - add this to [homes] to allow users login to their home directories(?)

[dolphin]
comment = dolphin ISOs
path = /mnt/3tbRED/DOLPHIN ISOs # SAMBA DOESN'T NEED ESCAPE SEQUENCES FOR SPACES AND SUCH
read only = yes
valid users = c0rn3j

 Samba requires a Linux user account - you may use an existing user account or create a new one.
 Although the user name is shared with Linux system, Samba uses a password separate from that of the Linux
user accounts.

Mounting every time is tedious though, let's add an entry to fstab to mount it on boot. First we'll
need to store the credentials safely though.

sudo nano /mnt/credentials

sudo chmod 600 /mnt/credentials - secure it so it's not readable by anyone but root or owner.

sudo nano /etc/fstab - and add this line at the bottom

mount -v - list all mountpoints

mount -t cifs - list mountpoints by fs

-c specifies to encrypt symmetrically(symmetrical is harder to crack than asymmetrical), defaults
to AES-128 which should be secure enough for now and the near future. AES-256 seems to be
noted as 30-40% slower, so if you don't mind taking that performance hit feel free to use that
instead(but I do suggest reading why you'd want to do that first as AES-128 is possibly enough for
you).

Encryption with a password and AES-256:

gpg --batch --cipher-algo AES256 --passphrase password -c file

Decryption with a password:

gpg --batch --passphrase password -o file -d file.gpg

If you are not going to be using an automatic script for encryption/decryption, you can simply omit
--passphrase password and you will be asked to enter it manually.

smbclient -L //192.168.1.10 -U% - list public shares on a server

sudo mount //192.168.1.10/homes /mnt/dolphin/ -o user=c0rn3j - example: Mount the home of user c0rn3j to
/mnt/dolphin/

username=c0rn3j
password=supersafepassword

//192.168.1.10/dolphin /mnt/dolphin cifs auto,x-systemd.automount,_netdev,credentials=/mnt/credentials 0 0

GPG Encryption

The above example is not secure because any user can execute ps aux and see the whole
command, including the password.

Now let's do it better!

nano password.txt - write your super secret password there

sudo chown root:root password.txt

sudo chmod 700 password.txt

Encryption with a password in a restricted file:

sudo gpg --batch --passphrase-file password.txt -c file

Decryption with a password in a restricted file:

sudo gpg --batch --passphrase-file password.txt -o file -d file.gpg

Check if your password is correct and list slots:

cryptsetup luksOpen --test-passphrase --verbose /dev/sda

Add a key file for automatic unlocking via /etc/crypttab:

cryptsetup luksAddKey /dev/nvme1n1p1 /etc/adatapass

Encrypt a file:

ansible-vault encrypt --vault-id C0rn3j/configs@~/C0rn3j_configs-vaultpass.txt id_ed25519

Encrypt a string for use in playbooks/templates:

ansible-vault encrypt_string --vault-id C0rn3j/configs@~/C0rn3j_configs-vaultpass.txt
'supersecretpassword' --name 'bree_matomo_db_password'

LUKS

Ansible

Revision #5
Created 28 June 2021 19:49:30 by C0rn3j
Updated 12 January 2024 08:16:58 by C0rn3j

